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Abstract

Background Although Basidiomycota produce pharmaceutically and ecologically relevant natural products,
knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition
from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply
the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased
demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe
mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if
L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation.

Results A comparative transcriptomic approach of gene expression in P mexicana psilocybin non-producing
vegetative mycelium versus producing carpophores identified the upregulation of L-tryptophan biosynthesis

genes. The shikimate pathway genes trpET, trpD, and trpB (encoding anthranilate synthase, anthranilate
phosphoribosyltransferase, and L-tryptophan synthase, respectively) were upregulated in carpophores. In contrast,
genes idoA and iasA, encoding indole-2,3-dioxygenase and indole-3-acetaldehyde synthase, i.e, gateway enzymes for
L-tryptophan-consuming pathways, were massively downregulated. Subsequently, lasA was heterologously produced
in Escherichia coli and biochemically characterized in vitro. This enzyme represents the first characterized microbial
L-tryptophan-preferring acetaldehyde synthase. A comparison of transcriptomic data collected in this study with prior
data of Psilocybe cubensis showed species-specific differences in how (-tryptophan metabolism genes are regulated,
despite the close taxonomic relationship.

Conclusions The upregulated L-tryptophan biosynthesis genes and, oppositely, the concomitant downregulated
genes encoding L-tryptophan-consuming enzymes reflect a well-adjusted cellular system to route this amino acid
toward psilocybin production. Our study has pilot character beyond the genus Psilocybe and provides, for the first
time, insight in the coordination of mushroom primary and secondary metabolism.
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Introduction
The Basidiomycota have collectively evolved a prolific
specialized, so-called secondary metabolism. These path-
ways elaborate a rich and structurally diverse repertoire
of bioactive natural products, among them toxicologi-
cally, pharmaceutically or ecologically relevant molecules
[1]. Ubiquitous compounds of the central or primary
metabolism, such as acetyl-CoA or amino acids, serve
as precursors to supply the main building blocks to the
biosynthesis pathways [2, 3]. Generally, primary meta-
bolism uses salvage pathways to regenerate metabolites
whereas secondary metabolism culminates in accumu-
lated or secreted end products. Therefore, upon eliciting
natural product pathways, the demand for the precursors
increases massively which implies a well-adjusted inter-
play between primary and secondary metabolism. How-
ever, knowledge of how basidiomycetes coordinate their
primary and secondary metabolism is very limited.
Mushrooms of the basidiomycete genus Psilocybe,
notorious for its perception-altering effects [4—6], pro-
duce psilocybin which serves as prodrug for psilocin, the
psychotropic and chemically reactive dephosphorylated
follow-up compound (Fig. 1). Psilocybin biosynthesis
is initiated by L-tryptophan decarboxylation, medi-
ated by the decarboxylase PsiD [7]. The activity of this
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metabolic pathway depends on the developmental stage
and increases strongly upon fructification that, in return,
is triggered by light [8, 9]. Consequently, during carpo-
phore formation, the demand for L-tryptophan increases
drastically, given that psilocybin accounts for up to 2% of
the mushroom dry mass [10-15]. In P. cubensis, the psiD
gene is 395-fold upregulated when mushroom primor-
dia are formed [7, 8]. However, the adjustment of meta-
bolic pathways supplying or degrading L-tryptophan is
unknown and it has remained shrouded how the fungus
meets the demand when psilocybin production sets in.
Aromatic L-amino acids are biosynthesized by the shi-
kimate pathway [16]. From the intermediate chorismate,
the anabolism of L-tryptophan branches off by anthrani-
late synthesis, catalyzed by TrpE (Fig. 1 and Additional
file 1: Figure S1). Three further reactions ultimately lead
to the formation of L-tryptophan to supply protein bio-
synthesis and other pathways that require tryptophan
and that represent tryptophan sinks, besides psilocybin
assembly. For example, indole-2,3-dioxygenases (IDOs)
initiate the pathway to 3-hydroxyanthranilate via kyn-
urenine as the starting point for nicotinamide metabo-
lism [17]. Likewise, indole acetaldehyde synthase depends
on L-tryptophan supply (Fig. 1). In this study, we present
a transcriptomic analysis of P mexicana with particular
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emphasis on genes involved in the L-tryptophan meta-
bolism. We investigated how the genes of the tryptophan
branch of the shikimate pathway are regulated along with
genes encoding IDOs as well as an indole-3-acetaldehyde
synthase. The latter was recombinantly produced and
biochemically characterized to verify its activity, given
that microbial indole-3-acetaldehyde synthases have not
been investigated yet.

Results

Transcriptomic analysis of P. mexicana

For insight into the regulation of tryptophan biosyn-
thetic genes, a transcriptomic study was performed.
First, we needed to design a robust experimental set-up
to compare psilocybin-producing and non-producing
conditions. Previous investigations of dried P. mexicana
sclerotia and carpophores determined psilocybin con-
tents up to 0.65% and 0.39%, respectively [13, 18]. Prior
efforts to optimize media usually aimed at increased
psilocybin concentrations [19]. We systematically tested
various media and found FB3G medium suitable for com-
parison as vegetative mycelium grown in this medium
was virtually free of psilocybin whereas BNM medium
stimulated psilocybin production (Additional file 1: Fig-
ures S2 and S3, media composition described in meth-
ods section) [19]. Consequently, comparative RNA-Seq
was performed with RNA samples isolated from vegeta-
tive mycelium, grown either in FB3G or BNM medium,
and from P. mexicana carpophores. Overall, 289,463,012
reads yielding over 86 Gb of sequence data were obtained
with a mean quality score of 35.57. Details of the DESeq2
analysis are shown in Additional file 1: Figures S4-S10,
the numbers of up- and downregulated genes (threshold
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Fig. 2 Expression analysis of selected genes involved in the tryptophan
metabolism in P mexicana based on RNA-Seq data. DESeq2 analysis com-
pared mycelium submerse-grown in FB3G versus carpophores. Genes
that are upregulated in carpophores versus submerse-grown mycelium in
FB3G show positive log,-fold changes. Asterisks represent the calculated
adjusted p-values: * 0.05<p,; ** 11071 < p,; < 0.05,* 1107 P < p_;: <
110719 p_ <1-107 % Color coding: green — tryptophan biosynthesis,
orange/brown - tryptophan degradation, blue - psilocybin biosynthesis,
maroon — aromatic acetaldehyde synthesis

Page 3 of 11

criteria: log,-fold change > |1| and adjusted p-value
(Pagj) <0.05) are provided in Additional file 1: Table S1.

Differential expression of genes for L-tryptophan
anabolism

We first investigated genes implicated in tryptophan
anabolism, a generally well understood process in model
organisms such as yeast and Aspergilli [20, 21]. The
conversion of chorismate to anthranilate and further to
L-tryptophan is catalyzed by the combined action of four
mono- or multifunctional enzymes that form a branch
of the shikimate pathway (Additional file 1: Figure S1).
These include (i) anthranilate synthase TrpE as the first
enzyme of the branch, (ii) anthranilate phosphoribos-
yltransferase TrpD, (iii) TrpC, a tri-functional enzyme
providing glutamine amidotransferase (G domain), phos-
phoribosyl anthranilate isomerase (F domain) and indole-
3-glycerol phosphate synthase activity (C domain), and
finally (iv) the homodimeric tryptophan synthase TrpB
featuring an a- and a f-domain per monomer [22]. Prior
to investigating the transcriptional dynamics, the respec-
tive genes needed to be identified in the genome of P
mexicana. Therefore, BLAST analyses were performed
with annotated fungal tryptophan pathway genes [23]
(Additional file 1: Table S2). In fact, pronounced tran-
scriptional changes were found when comparing the data
of FB3G mycelium (psilocybin biosynthesis suppressed)
with the carpophore samples (psilocybin biosynthesis
induced, Fig. 2, Additional file 1: Figure S11 and Table
S3) for the expression of the genes putatively encoding
TrpE, TrpD and TrpB. These were strongly upregulated
in carpophores (trpE1: 2.7-fold; trpD: 10.5-fold; trpB: 8.8-
fold, corresponding log,-fold values are 1.45, 3.39 and
3.14). A gene putatively encoding a second anthranilate
synthase, TrpE2, was only minimally downregulated (1.7-
fold) which may reflect the frequently observed phenom-
enon of multiple (yet possibly non-functional) alleles of
biosynthetic genes encoded in basidiomycete genomes
[24-26]. With a 1.9-fold upregulation, the transcriptional
activity of the trpC gene changed at a lower degree. Still,
the more strongly upregulated tryptophan biosynthe-
sis genes trpEl, trpD and trpB are consistent with the
increasing demand for vL-tryptophan in carpophores
when psilocybin biosynthesis sets in.

Differential expression of genes for L-tryptophan-
converting enzymes

Subsequently, we analyzed the genes encoding key
enzymes that convert L-tryptophan (Fig. 1). Aromatic
acetaldehyde synthases (AASs) draw on the L-trypto-
phan pool by producing indole-3-acetaldehyde in a single
combined decarboxylation/deamination step. Likewise,
indoleamine-2,3-dioxygenases (IDOs) degrade L-trypto-
phan as they catalyze the oxidative cleavage of the pyrrol
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ring to yield N-formylkynurenine, thereby supplying vari-
ous pathways with substrate, among them one leading to
3-hydroxyanthranilic acid and nicotinamide/NAD*. In
fact, the expression of putative genes for an acetaldehyde
synthase (IasA) as well as for IDOs was downregulated
in mushrooms (iasA: eight-fold; idoA: 350-fold; idoC:
1.7-fold). The corresponding log,-fold changes are —3.0,
-8.45, and —0.76, respectively (Additional file 1: Table S3).
A pathway-specific L-tryptophan decarboxylase is the
gateway enzyme of the psilocybin biosynthesis [7] and,
thus, represents an L-tryptophan sink as well. In con-
trast to the downregulated genes for IDOs and IasA, the
psiD gene encoding this decarboxylase [27], was 170-fold
upregulated in carpophores. The latter value confirms
previous findings for P cubensis psiD that is massively
expressed in primordia and carpophores as well [8]. To
confirm the RNA-Seq data, expression of these genes was
independently investigated by qRT-PCR that yielded per-
fectly congruent results (Fig. 3). Collectively, these find-
ings further support the notion that L-tryptophan-related
genes are regulated in a fashion to supply PsiD with a
maximum quantity of this aromatic amino acid upon
beginning psilocybin production in carpophores. Gener-
ally, the comparison between the three conditions (car-
pophores, and mycelium grown in BNM and FB3G media
(Additional file 1: Table S3, Figure S11)) also underlines
and confirms the relevance of medium composition and
developmental stage for psilocybin content.

Characterization of P. mexicana lasA

Aromatic aldehyde synthases (AASs) and aromatic
amino acid decarboxylases (AAADs) share common
ancestry and, consequently, very similar amino acid
sequences. The decision between the two catalytic
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Fig. 3 Expression analysis of selected genes involved in the tryptophan
metabolism in P mexicana based on gqRT-PCR results. The analysis com-
pared mycelium submerse-grown in FB3G medium and carpophores.
Shown values represent log,-fold changes (positive, if genes are upregu-
lated in carpophores) and standard deviations of means (n=3). The values
are normalized to the expression of enoA (encoding enolase) as a control
gene. Color coding: green — tryptophan biosynthesis, orange/brown -
tryptophan degradation, blue — psilocybin biosynthesis, maroon - aro-
matic acetaldehyde synthesis
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activities (decarboxylation and oxidative deamination
by AASs versus decarboxylation by AAADs) is pri-
marily mediated by one signature amino acid residue
located in the large loop close to the active site (phe-
nylalanine for AAS, tyrosine for AAADs) [28-30]. The
amino acid sequence alignment of P mexicana lasA
with previously described AASs and AAADs identified
a phenylalanine residue at position 329, which points
to a function as acetaldehyde synthase (Additional file
1: Figure S12). To confirm the catalytic activity, lasA
was heterologously produced and assayed in vitro. The
enzyme is encoded by a 2064 bp gene, which is inter-
rupted by ten introns between 50 and 62 bp in length.
The fully spliced iasA reading frame is 1503 bp long
and encodes a 500 aa protein with a predicted mass
of 55.9 kDa. The amino acid sequence of P. mexicana
IasA is 80% identical and 85% similar to that of P
cubensis L-3,4-dihydroxyphenylacetaldehyde synthase
PcDHPAAS (AYU58583) (Additional file 1: Table S4).
To produce recombinant enzyme, the P. mexicana iasA
cDNA was cloned to create expression plasmid pPS66,
which was used to transform E. coli KRX. IasA was pro-
duced as a 56.9 kDa C-terminally tagged hexahistidine
fusion protein (Additional file 1: Figure S13) and puri-
fied by metal affinity chromatography. Size exclusion
chromatography with urea-denatured IasA resulted in
a single symmetrical peak at an elution volume of 13.4
mL (Additional file 1: Figure S14), which is consistent
with the calculated monomeric mass (56.9 kDa). When
native protein was loaded, IasA eluted as a single peak
at 14.4 mL, corresponding to the size of a homodimer
(Additional file 1: Figure S14). This result is consistent
with previously described homodimeric AAADs and
AASs [30]. When the in silico modeled structure of
P. mexicana lasA was superimposed with the experi-
mentally determined protein structure of Arabidop-
sis thaliana phenylacetaldehyde synthase (PDBe 6eei
[30]), a high degree of structural similarity was found
(Additional file 1: Figure S15). Subsequently, the enzy-
matic activity of lasA was assayed in PLP-containing
sodium phosphate buffer (pH 7.5) and the product
detected with Brady’s reagent [31]. Substrates tested
included r- and p-configured tryptophan, 4-hydroxy-
L-tryptophan, 5-hydroxy-L-tryptophan, L-tyrosine,
L-phenylalanine, L-histidine and 3,4-dihydroxy-L-phe-
nylalanine (L-DOPA). Reactions with heat-inacti-
vated enzyme were used as negative controls. IasA
accepted L-tryptophan and its hydroxy-derivatives
(Fig. 4) while p-tryptophan was only minimally turned
over and L-histidine was not accepted altogether. As
L-tryptophan most likely represents the physiologi-
cally relevant substrate, its turnover was set to 100%.
Highest turnover was found with 5-OH-L-tryptophan
(132%) while L-DOPA, L-phenylalanine and L-tyrosine
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Fig. 4 Substrate specificity of P mexicana lasA. Photometric detection
of hydrazone formation from lasA-produced aldehydes and 2,4-dinitro-
phenylhydrazine (2,4-DNPH). Absorption was measured at A=500 nm and
800 nm (reference wavelength). The value of the heat-inactivated control
thus obtained was subtracted from the respective value of the reactions
with native enzyme. The experiment was performed with two biological
replicates and three technical replicates each. Mean values and standard
deviations are shown

were turned over to a lesser extent (68, 61, and 43%,
respectively). This substrate profile distinguishes IasA
from PcDHPAAS, which was previously described
as L-3,4-dihydroxyphenylacetaldehyde synthase [32].
Optimum turnover with IasA occurred at pH 9.0 in
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TRICIN buffer (Additional file 1: Figure S16) within a
temperature plateau of 30-34 °C (Additional file 1: Fig-
ure S17). To verify indole-3-acetaldehyde as the IasA
product, the reactions were treated with sodium boro-
hydride which reduces the aldehyde to tryptophol. In
the reactions, but not in the controls, a new chromato-
graphic signal appeared at the same retention time as
the synthetic tryptophol standard (tz = 3.9 min, Fig. 5)
with the matching mass to charge ratio (m/z 162.1
[M+H]"). Therefore, we unambiguously identified
P mexicana lasA as indole-3-acetaldehyde synthase,
which represents the first characterized microbial
acetaldehyde synthase accepting L-tryptophan as main
substrate.

Comparison of indoleamine-2,3-dioxygenases

The second gene whose transcription decreases as psi-
locybin is produced encodes an indoleamine-2,3-dioxy-
genase (IDO). Typically, the Agaricomycotina encode
three types of IDOs (a-c) that share a common phyloge-
netic origin. However, some of the genes can be absent
or duplicated, depending on the species [33], and varia-
tion occurs even within the genus Psilocybe. Both P
cubensis and P. mexicana each encode one IdoA (type
a) and IdoC (type c) enzyme. However, unlike P cuben-
sis, the sister species P mexicana lacks genes for IdoB
enzymes (type b, Additional file 1: Figure S18). P mexi-
cana 1doA and IdoC are equivalent to the counterparts
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Fig. 5 Chromatographic analysis of lasA activity assays to detect tryptophol formation by P mexicana lasA. (A) Chromatograms were extracted at
A=280 nm. Top trace a: overlaid chromatograms of t-tryptophan and tryptophol references, center trace b: reaction with lasA, bottom trace c: negative
control with heat-inactivated lasA. (B) Extracted ion chromatograms (EICs; m/z 162 and 205 [M+H]"). (C) Mass spectra of chromatographic signals of 1-

tryptophan (*) and tryptophol (**) in trace b, recorded in positive mode
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in P. cubensis (Additional file 1: Table S5). In contrast,
P. cubensis encodes two type b IDOs, whose genes were
found upregulated in carpophores. Some fungal rep-
resentatives, i.e., type ¢ IDOs, show very low catalytic
activity and their meta-bolic role is still unclear [33].
We suggest it is IdoA in P mexicana that is primarily
involved in L-tryptophan metabolism, as it is downregu-
lated up to 350-fold under psilocybin production condi-
tions (Additional file 1: Table S3, Figures S11 and S18).
This transcriptional pattern correlates with the demand
of L-tryptophan when psilocybin biosynthesis begins.

Differential expression of tryptophan metabolism genes in
Psilocybe spp

The transcriptional dynamics of pertinent genes in
P. mexicana carpophores was compared with prior
data from P. cubensis mushrooms [32]. Surprisingly
and contrasting P. mexicana, most of the investigated
P cubensis genes (Additional file 1: Table S6) related
to L-tryptophan metabolism showed only marginal
up or down regulation. The transcriptional changes
of the genes coding for the tryptophan biosynthe-
sis enzymes TrpE, TrpD, TrpC and TrpB, the indole-
amine-2,3-dioxygenases IdoA, IdoBl and IdoC and
the aromatic acetaldehyde synthase PcDHPAAS range
between —2.1-fold and + 2.9-fold (log,-fold —1.1 and
+1.6, Fig. 6, Additional file 1: Table S7). However, both
species showed the pronounced regulation of psiD
(54-fold and 170-fold for P. cubensis and P. mexicana,
respectively, log,-fold values: 5.8 and 7.4). Another
putative indoleamine-2,3-dioxygenase gene in P
cubensis, referred to as idoB2 and for which a homolog
does not exist in P mexicana, was found to be 78-fold
upregulated in P cubensis carpophores (log,-fold
6.3), whereas either of the investigated ido genes of
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Fig. 6 Expression analysis of selected genes involved in the tryptophan
metabolism in P cubensis. The RNA-Seq raw reads of mycelial and carpo-
phore samples from Torrens-Spence et al. [32] were mapped and DESeq?2-
analyzed using Geneious Prime software. Genes that are upregulated in
carpophores versus mycelium show positive log,-fold changes. Asterisks
represent the calculated p-values: * 0.05 <p,q; ** 110710 < Pagj < 0.05; **
1107190 < p g < 1107 1% = p_ < 1:1071%. Color coding: green - trypto-
phan biosynthesis, orange/brown - tryptophan degradation, blue - psilo-
cybin biosynthesis, maroon — aromatic acetaldehyde synthesis

Page 6 of 11

P. mexicana was downregulated. The expression pat-
tern of the homologous genes encoding aromatic
acetaldehyde synthases (PcDHPAAS in P cubensis,
log,-fold+1.6; and iasA in P. mexicana, log,-fold —3.0)
is also diverging between the two investigated repre-
sentatives of the Psilocybe genus. The phenomenon of
oppositely regulated enzymes PcDHPAAS in P. cuben-
sis and lasA in P. mexicana likely reflects the respec-
tive substrate preferences. Without downregulation,
the latter enzyme would compete with PsiD for its
substrate while the substrate of the former enzyme,
L-DOPA, does not interfere. Hence, regulation of
PcDHPAAS does not need to be adjusted relative to the
L-tryptophan-requiring enzyme PsiD.

Discussion

To ensure adequate supply of building block substrates
and cofactors for enzymatic reactions, natural product
pathways closely root in the cell’s central metabolism.
The specialized purpose of the often bioactive and highly
functionalized natural products, along with the demand
for substrates of the central metabolism require that their
assembly is a genetically tightly regulated process. Pre-
vious research predominantly emphasized ascomycetes
and identified various levels of regulation. These include
epigenetic modification as well as pathway-specific and
global transcriptional control, e.g., by the prototypical
pathway-specific regulator AfIR for aflatoxin biosynthe-
sis, the global regulator LaeA, or the regulatory circuits
around penicillin biosynthesis [34—38]. Little is known
about natural product pathway regulation in basidiomy-
cetes, yet a correlation of blue light exposure and post-
transcriptional regulation by light-dependent splicing has
been shown [39].

Metabolic flux is a second important aspect of how cen-
tral and secondary metabolism interface and contribute
to regulation. Penicillin biosynthesis is arguably among
the most prominent and best investigated examples. The
analysis of central and amino acid metabolism in Penicil-
lium chrysogenum revealed that the metabolic flux toward
L-cysteine and L-valine strongly increases under penicillin
production conditions to supply these amino acids as path-
way substrates. Furthermore, an increased flux through the
tricarboxylic acid cycle and the pentose phosphate pathway
were observed to supply the energy-intensive synthetase
reaction with ATP and the NADPH-intensive L-cysteine
biosynthesis with reduction equivalents [40]. Likewise, pro-
duction of the pharmaceutically invaluable polyketide lovas-
tatin was enhanced in a genetically engineered Aspergillus
terreus [41]. By overexpressing the gene for the acetyl-CoA
carboxylase in A. terreus, an increased malonyl-CoA supply
was offered to the lovastatin polyketide synthases, resulting
in enhanced product titers.



Seibold et al. Fungal Biology and Biotechnology (2024) 11:4

This substantial body of research related to the metabolic
flux for important ascomycete products is contrasted by
our only rudimentary knowledge for basidiomycetes. For
these, it has remained largely shrouded how natural prod-
uct pathways are regulated and how the substrate supply
is optimized to support a particular pathway. In the case
of psilocybin, an interplay between primary metabolism
and natural product biosynthesis has been reported for
P cubensis [8]. Adenosine kinase AdoK and S-adenosyl-
L-homocysteine hydrolase (SahH) directly or indirectly
remove the methyltransferase-inhibiting second product
S-adenosyl-L-homocysteine and regenerate S-adenosyl-
L-methionine (SAM), hence supporting the SAM-depen-
dent methyltransfer as the final biosynthetic step. However,
little is known about how the supply and degradation of the
substrate L-tryptophan is genetically regulated except for
the gene encoding the previously characterized tryptophan
synthase TrpB [22], that is six-fold upregulated in carpo-
phores of P cubensis, compared to vegetative mycelium [8].
Furthermore, regulators that bind to promoters of genes
encoding pathway and catabolic genes of L-tryptophan are
unknown for the genus Psilocybe. In the medicinal mush-
room Ganoderma lucidum, the basic leucine zipper (bZIP)
transcription factor GCN4 serves as a master regulator for
amino acid biosynthesis [42], which confirms earlier find-
ings with Saccharomyces cerevisiae and Aspergilli, where
¢pcA encodes the gene homologous to S. cerevisiae GCN4
and e.g., controls trpB expression [20, 43, 44]. P. mexicana
encodes three genes homologous to GCN4. Only one
of these (Additional file 1: Sequence data 1) showed an
increase of transcription (log,-fold value 2.1) under psilocy-
bin-producing conditions which might point to a function
in upregulating amino acid metabolism. However, regula-
tory mechanisms other than on the transcriptional level
appear possible as well. For example, import into nucleus
[45, 46), posttranslational modification [47], or alternative
splicing [39], although our P. mexicana transcriptomic data
did not indicate the presence of differently spliced mRNA
populations of the investigated genes. Hence, future work
needs to establish the regulatory mechanism(s) of amino
acid metabolic genes in Psilocybe.

In addition to analyzing anabolism and substrate sup-
ply, our study design also covered catabolism, which
revealed the role of IasA, the indole-3-acetaldehyde syn-
thase of P mexicana. A similar enzyme, PcDHPAAS of
P cubensis, was previously characterized but found to
prefer L-DOPA over L-tryptophan as substrate [32]. This
finding underscores, once more, that subtle yet relevant
differences between these closely related species and
their enzymatic repertoire exist. Investigation of IasA is
warranted for two reasons. First, it represents the first
characterized microbial indole acetaldehyde synthase.
Furthermore, it may play a role for chemical ecology as
it catalyzes a key reaction toward indole acetic acid. This
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microbial, insect and auxin-type plant signal compound
mediates interspecies interactions and insect gall forma-
tion [48, 49].

In conclusion, our results help understand the regu-
lation of primary metabolism around tryptophan lev-
els to optimize psilocybin-related secondary metabolic
processes in P mexicana. This knowledge will support
efforts to control and increase the psilocybin content in
mushrooms grown in certified facilities for legitimate
purposes without any genetic manipulation. As mush-
rooms are notoriously difficult to modify genetically
and given the status of psilocybin as a candidate drug to
potentially treat major depressive disorders, the outcome
of our study may promote biotechnology with Psilocybe.
Beyond this particular metabolite and genus, our current
work has pilot character as it addresses, for the first time,
that mushrooms match primary and secondary metabo-
lism through a coordinated regulation of anabolic and
catabolic routes.

Methods

Materials and general procedures

Chemicals, media ingredients, and solvents were pur-
chased from Carl Roth, Sigma-Aldrich, and VWR. Oli-
gonucleotides were synthesized by Integrated DNA
Technologies and are listed in Additional file 1: Tables S8
and S9. Restriction enzymes were purchased from NEB.
Procedures to handle and modify DNA (extraction from
agarose gels, restriction, dephosphorylation, ligation, and
plasmid isolation) followed the manufacturers’ instruc-
tions (Macherey-Nagel, NEB).

Microbial strains and growth conditions

Psilocybe mexicana SF013760 was maintained on malt
extract peptone (MEP) agar plates (per liter: 30 g malt
extract, 3 g peptone, 18 g agar, pH 5.5). To collect bio-
mass from liquid cultures for nucleic acid extraction,
P mexicana was cultivated for 7 days in liquid MEP
medium at 25 °C and 140 rpm. To find conditions suit-
able for RNA-Seq analysis, P mexicana was precultured
in 450 mL FB3G medium (per liter: 10 g malt extract,
10 g glucose, 5 g yeast extract, 3 g peptone, 0.1 g KH,PO,
pH 5.5) for 7 days at 21 °C and 180 rpm. The preculture
was dispersed and 10 mL each were used to inoculate 150
mL of different media. Selected media were: FB3G, MEP,
BNM (as described in [19]), FB5B (similar to BNM but
D-glucose increased to 7.5 g, and 6 g D-galactose per liter
as additional carbon source), FB3B (similar to FB5B but
yeast extract increased to 5 g per liter). The cultivation
was continued for 7 days at 21 °C, 180 rpm in sextupli-
cates. Carpophore formation was induced as described
[50]. Fungal biomass was collected, filtered through
Miracloth (Merck) and washed with water if harvested
from a liquid culture, shock-frozen in liquid nitrogen and
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lyophilized prior to nucleic acid or metabolite extraction.
Escherichia coli KRX (Promega) was used for routine
cloning, plasmid propagation and heterologous produc-
tion of IasA. For cultivation of E. coli, LB medium (per
liter: 5 g yeast extract, 10 g tryptone, 10 g NaCl, and 18 g
agar if applicable) supplemented with 50 ug mL™! kana-
mycin sulfate was used. For heterologous production, 2
X YT medium (per liter: 10 g yeast extract, 20 g tryptone,
5 g NaCl) was used instead of LB medium.

Nucleic acid isolation, first strand synthesis and qRT-PCR
Genomic DNA was isolated following a described pro-
tocol with a slight modification (isopropanol instead of
ethanol precipitation) [51]. RNA isolation, reverse tran-
scription, and qRT-PCR were performed as described [8,
52, 53]. The housekeeping reference gene enoA, encoding
enolase, served as internal standard. Oligonucleotides
with a primer efficiency of at least 90% were used for
qRT-PCR (Additional file 1: Table S8). Gene expression
levels were determined as described [54].

RNA-Seq of P. mexicana

RNA was isolated from three biological replicates of
P mexicana grown in BNM and FB3G liquid medium
as well as from carpophores produced in an axenic
laboratory culture. RNA-Seq and parts of the bioinfor-
matic analysis including the differential gene expres-
sion analysis, was performed by GENEWIZ. Sequences
of 2x150 bp paired end reads were generated on an
Illumina NovaSeq platform. Sequence fastq files were
trimmed using Trimmomatic (v.0.36) [55] and mapped
to the respective genome (GenBank: GCA_023853805.1)
using the STAR aligner (v.2.5.2b) [56]. Unique gene hit
counts were calculated using featureCounts [57] from the
Subread package (v.1.5.2) [58]. Differential gene expres-
sion analysis was performed using DESeq2 [59]. log,-fold
changes and p-values were generated by applying the
Wald test [60]. The Benjamini Hochberg method [61] was
used to calculate adjusted p-values. Trinity (v2.13.2) was
used for RNA-Seq de novo assembly applying the stan-
dard settings [62, 63].

Expression analysis of P. cubensis RNA-Seq raw reads with
Geneious Prime software

The raw data published by Torrens-Spence et al. [32]
(NCBI SRA: SRR7028478 and SRR7028479) was mapped
to the P cubensis genome (GenBank: GCA_017499595.2).
The expression levels were calculated and compared with
the Geneious method to measure the differential expres-
sion. As a result, log,-fold change values and p values
were obtained (Fig. 6, Additional file 1: Table S7).
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Phylogenetic analyses of indoleamine-2,3-dioxygenases
Amino acid sequences were aligned using ClustalW2
[64] implemented in MEGA X software (v. 10.2.6) [65].
The evolutionary history was inferred by the Maximum
Likelihood method and Le_Gascuel_2008 model [66]. A
phylogenetic tree was constructed using the Maximum
Likelihood method and the Jones-Taylor-Thornton model
[67] and 1000 bootstrap replications [68].

Protein structure prediction

Aromatic acetaldehyde synthase modeling was per-
formed with AlphaFold2 [69] and was superimposed
using ChimeraX [70, 71] and Arabidopsis thaliana phen-
ylacetaldehyde synthase (PDBe 6eei [30]), as reference
(Additional file 1: Figure S15).

Heterologous production of lasA

The iasA coding sequence was PCR-amplified (Addi-
tional file 1: Table S10, PCR method A) from P. mexicana
c¢DNA using oligonucleotides 0oPS628/629 (Additional
file 1: Table S9). The agarose gel-purified fragment was
ligated to the Ncol-Xhol-restricted and dephosphorylated
(QuickCIP, NEB) plasmid pET28a using the NEBuilder
HiFi DNA Assembly Cloning Kit (NEB) to yield expres-
sion plasmid pPS66. Correct assembly of insert and vec-
tor was verified by colony PCR (Additional file 1: Table
S10, PCR method B), analytical restriction digests and
DNA sequencing (GENEWIZ Inc.). IasA was produced
in E. coli KRX X pPS66 essentially as described [27]. The
protein was concentrated on an Amicon Ultra-15 cen-
trifugal filter and eluted with 50 mm sodium phosphate
buffer (pH 7.5). Protein concentrations were determined
using the Pierce BCA-Protein Assay Kit (Thermo). The
protein production was verified by SDS-polyacrylamide
gel electrophoresis (SDS-PAGE) (Additional file 1: Figure
S13).

In vitro aldehyde formation assays

Aldehyde formation by IasA was monitored using a pho-
tometric assay and Brady’s reagent (2,4-dinitrophenylhy-
drazine, 2,4-DNPH) [31]. As described in [72], the freshly
prepared detection solution consisted of 0.1% (w/v)
2,4-DNPH dissolved in MeOH with 1% (v/v) sulfuric
acid. 100 pL of ice-cold detection solution were used to
stop enzymatic reactions with the same volume follow-
ing a 20 h incubation at 25 °C. Product formation was
detected photometrically by measuring the absorption
at A=500 nm (and 800 nm as reference wavelength) in
a CLARIOstar plate reader (BMG LABTECH). Control
reactions without substrates, without enzyme, neither
with substrate nor with enzyme, or with heat-inactivated
enzyme were run in parallel. The assay was performed
twice in triplicates in 50 mM buffer (sodium phosphate,
pH 7.5) with 1 mm of the respective substrate, 0.1 mm
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pyridoxal 5'-phosphate (PLP) and hexahistidine-tagged
IasA at a final concentration of 13 pm.

UHPLC-MS analysis of tryptophol formation in vitro

The assays were performed in triplicate at 25 °C for
20 h in 50 mM sodium phosphate buffer (pH 7.5) with
1 mM L-tryptophan, 0.1 mM pyridoxal 5'-phosphate
(PLP) and hexahistidine-tagged IasA at a final con-
centration of 1 pM in a final volume of 50 pL. Reac-
tions with heat-inactivated enzyme served as negative
control. To analyze aldehydes reliably by high-per-
formance liquid chromatography (HPLC), every
reaction was stopped with 200 pL of sodium borohy-
dride-saturated ethanol solution for reduction [29,
30, 73]. Formic acid (250 puL 0.8 m) was added after
5 min incubation at room temperature to decompose
remaining borohydride and for an acidic pH (pH 4 to
5). Reactions were frozen in liquid nitrogen and sub-
sequently lyophilized. The samples were dissolved in
200 pL methanol, centrifuged (10 min, 20,000 X g), and
the supernatants were chromatographically analyzed
by measuring areas under curves (AUCs) of extracted
ion chromatogram (EIC) peaks. To determine optimal
reaction conditions, the incubation time was short-
ened to 2 h and the final concentration of enzyme
was increased to 2 pm. The pH was varied between 5
and 11 (5.0 to 6.5 in citrate, 6.0 to 8.0 in sodium phos-
phate, 7.5 to 9.0 in TRICIN, 8.5 to 10.0 in CHES, 9.5 to
11.0 in CAPS buffers) and the temperature was varied
between 14 and 50 °C (TRICIN pH 9.0).

Size exclusion chromatography

To verify that IasA is a homodimer, fast protein liquid
chromatography (FPLC, Akta Pure 25, GE Healthcare)
equipped with a Superdex 200 increase 10/300 GL col-
umn with 24 mL bed volume was used. Binding and elu-
tion were performed at a flow of 0.5 mL min™? (i) with 50
mM sodium phosphate, 150 mm NaCl, pH 7.2 or (ii) with
additional 6 M urea (denaturing conditions). Chromato-
grams were recorded at A=280, 340 and 400 nm.

Chemical synthesis of tryptophol

The synthesis of tryptophol (2-(indol-3-yl)ethanol) was
performed as described [74]. NMR spectroscopic data
is listed in the supplementary material, 'H and '*C NMR
spectra are shown in Additional file 1: Figures S19 and
S20.

Liquid chromatography and mass spectrometry

Methanol extracts of in vitro experiments with lasA
were subjected to UHPLC-MS analysis on an Agilent
1290 Infinity II instrument, interfaced to an Agilent 6130
single quadrupole mass detector, operated in alternat-
ing positive/negative mode. The chromatograph was
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fitted with an Ascentis Express F5 column (100x2.1 mm,
2.7 um particle size). Separation was at 35 °C. Solvent A
was 0.1% formic acid in water, solvent B was methanol. A
linear gradient at a flow rate of 0.4 mL min~' was applied:
within 8 min from 10 to 100% B, held for 2 min at 100%.
Diode array detection was performed between A=200—
600 nm. Chromatograms were extracted at A=205, 224,
254, 269 and 280 nm. To analyze methanolic extracts of
P mexicana mycelium, the same instrument, equipped
with a Luna Omega Polar C18 column (50%2.1 mm,
1.6 um particle size) was used. Solvent A was 0.1% formic
acid in water, solvent B was acetonitrile. The flow was 1
mL min~'. The gradient was: initially 1% B, increase to
5% B within 3 min, to 100% B within further 1 min, held
at 100% B for 2 min. Chromatograms were extracted at
A=254 and 280 nm.
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